Z,1=1{0,1,2,3,..,p-2}
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2,={0,1,2,3,..,n-1}; +modn,-modn, *modn, / mod n. Finite ring of integers mod n.
Z,={0,1,2,3,..,p-1}; + mod p, - mod p, * mod p, / mod p. Finite field - Galois field mod p when p is prime.
Finite algebraic group mod p.

+ mod p-1, - mod p-1, * mod p-1, / mod p-1. Finite ring of integers mod p-1.

{1,2,3,..,p-1}; *modn, /mod p.

<+ mod p-1, - mod p-1, * mod p-1, / mod p-1 > <Zp*, *mod n>

DEF (x) = g*mod p = a:

<Zp-1, + mod p-1> —> <Z,*, *mod n>

=7 mid (o, 44)

>> ab=a*b >>a_ml=mulinv(a,pm1l)
>> c=mod(ab,p)

Discrete Exponent Function (1/14)

The Discrete Exponent Function (DEF) used in cryptography firstly was introduced in the cyclic
multiplicative group Z," = {1, 2, 3, ..., p-1}, with binary multiplication operation * mod p, where p is
prime number. Further the generalizations were made especially in Elliptic Curve Groups laying a
foundation of Elliptic Curve CryptoSystems (ECCS) in general and in Elliptic Curve Digital Signature
Algorithm (ECDSA) in particular.

Let g be a generator of Z," then DEF is defined in the following way:
DEF (x) = g*mod p = a;

DEF argument x is associated with the private key — PrK (or other secret parameters) and therefore we will
label it in red and value « is associated with public key — PuK (or other secret parameters) and therefore we
will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime
number has a length of 2048 bits, which means it is represented in decimal as being on the order of 2294, or
approximately p ~ 22048,

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also
with a strong prime numbers.
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>>a_ml=mulinv(a,p)

>>p=11 % prime % skaiciavimas mod p-1 /4 % skaiciavimas mod
>> isprime(p) >> pml=p-1 A 7. \//]\ >>a=3

>>a=4 >>ma=mod(a,pm1) 4/1

>>mod(a,p) >>mod(a+ma,pm1) /ﬂ >> gcd(a,p)

>>b=9 >> ged(4,p)
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Discrete Exponent Function (2/14)

Definition. Binary operation * med p in Z," is an arithmetic multiplication of two integers called operands
and taking the result as a residue by dividing by p.

For example, letp =11, thean* =11,2,3,..., 10}, then 5* 8 mod 11 =40 mod 11 =7, where 7 Zp*,
In our example the residue of 40 by dividing by 11 isequalto 7,1.e.,40=3* 11 + 7.

Then 40 mod 11=(33+7)mod 11 =33 mod 11 +7mod 11)mod 11=(0+ 7)mod 11=7.

Notice that 33 mod 11 =0 and 7 mod 11 = 7.

Definition: The integer g is a generator in Z," if powering it I:;y integer exponent values x all obtained
numbers that are computed mod p generates all elements in in Z,".

So, it is needed to have at least p-1 exponents x to generate all p-1 elements onp’. You will see that exactly
p-1 exponents x is enough.

Discrete Exponent Function (3/14)
Let I" be the set of generators in Z,". How to find a generator in Z,"?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the
generator in Z," can be found by random search satisfying two following conditions.

Forall gel”
£7% 1 mod p; and 22 # 1 mod p.

Fermat little theorem: If p is prime then for all integers n:

i”'=1 mod p.
Corollaries: 1. The exponent p-1 is equivalent to the exponent 0, since = i*! = 1 mod p.

2. Any exponent e can be reduced mod (p-1), i.e.

“mod P =R mod (7-1) mod p.
3. All non-equivalent exponents x are in the set Z, , = {0, 1, 2, ..., p-2}.
4.Sets Z, and Z,” have the same number of elements.

010_005 DEF.Homomorphism Page 2



Discrete Exponent Function (4/14)
In Z, , addition +, multiplication * and subtraction - operations are realized mod (p-1).
Subtraction operation (/-d) mod (p-1) is replaced by the following addition operation (& + (-d)) mod (p-1)).
Therefore, it is needed to find -d mod (p-1) such that d + (-d) = 0 mod (p-1), then assume that
-d mod (p-1) = (p-1-d).
Indeed, according to the distributivity property of modular operation
(d+ (-d)) mod (p-1) = (d + (p-1-d) mod (p-1) = (p-1) mod (p-1) =0.

Then

(h-d) mod (p-1)= (h + (p-1-d)) mod (p-1)

>>ma=mod(-a,p)
ma=8
>>mod(a+ma,p)
ans=0

Discrete Exponent Function (5/14)

Statement: 1f greatest common divider between p-1 and i is equal to 1, i.e., ged(p-1, i) = 1, then there
exists unique inverse element i-! mod (p-1) such that i * i"'mod (p-1) = 1. This element can be found by
Extended Euclide algorithm or using Fermat little theorem. We do not fall into details how to find i-! mod
(p-1) since we will use the ready-made computer code instead in our modeling.

Division operation / mod (p-1) of any element in Z,; by some element i is replaced by multiplication *
operation with i-'mod (p-1) if ged(i, p-1)= 1 according to the Statement above.

To compute u/i mod (p-1) it is replaced by the following relation & * i"" mod (p - 1) since
u/imod (p-1) = u * i mod (p-1).

>>b_ml=mulinv(b,p) > adb=mod(a*b_m1,p)
b ml1=5 adb=4
>>mod(b*b_m1,p) >>mod(4*b,p)

ans=1 ans=3
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>> uxh=u+x*h

Discrete Exponent Function (6/14) uxh = 58
Example I: Let for given integers u, x and /& in Z,, we compute exponent s of generator g by the >>mod(58,11)
expression ans =3
s=u+xh. >> xh=x*h
Then xh =56
g*mod p = g*md - mod p. >> mod(xh,p)
Therefore, s can be computed mod (p-1) in advance, to save a multiplication operations, i.e. ans=1
s=u+xh mod (p-1). >>s=mod(u+1,11)
s=3

Example 2: Exponent s computation including subtraction by xr mod (p-1) and division by / in Z,, ; when

ged(Z, p-1)= 1.
& s = (h-xr)i'mod (p-1).

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly ' mod (p-1) is found.

And finally exponent s = (h + (p-1-d))i"* mod (p-1) is computed.

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be

proved.
Theorem. 1f g is a generator in Z,” then DEF provides the following 1-to-1 mapping

DEF:. Z,,— Z,.
Parameters p and g for DEF definition we name as Public Parameters and denote by PP = (p, g).

Example: Strong prime p=11,p=2 %5+ 1, then ¢ = 5 and ¢ is prime. Then p-1 = 10.
Z, =1{1,2,3,...,10}
zm: {0,1,2,...,9}
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Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named
Cayley table including multiplication table, addition table etc.

Multiplication table of multiplicative group Z,," is represented below.

Multiplication ~ Z,,"

tab. mod 11
* 1 2 3 4 5 6 7 8 9 10 Values of inverse elements in Z,,"
1 1 2 3 4 5 6 7 8 9 10 1”'= 1 mod 11
2 2 4 6 8 10 1 3 5 7 9 2'=6mod 11
3 3 6 9 1 4 7 10 2 5 8 3'=4mod 11
4 4 8 1 5 9 20 6 10 3 7 4'=3mod 11
5 5 10 4 9 3 8 2 7 1 6 5'=9mod 11
6 6 1 7 2 8 3 9 4 10 5 6'=2mod 11
7 7 3 10 6 2 9 5 1 8 4 7= 8 mod 11
8 8 5 2 10 7 4 1 9 6 3 8'=7 mod 11
9 9 7 5 3 1 10 8 6 4 2 9= 5 mod 11
0 10 9 8 7 6 5 4 3 2 [ 10"'=10 mod 11

Discrete Exponent Function (9/14)

The table of exponent values for p =11 in Z,," computed mod 11 and is presented in table below.
Notice that according to Fermat little theorem for all ze Z,,", z/'=z"Y=27" =1 mod 11.

Exponent Z,,"

tab. mod 11 List of generators when
A 0 1 2 3 4 5 6 7 8 9 [0 q=3
1 1 1 1t 1 1 1 1 1 1 1
2 I 2 4 8 5 10 9 7 3 6 1 2% modll&2#l mod 11
3 I 3 9 5 4 1 3 9 5 4 1
4 I 4 5 9 3 1 4 5 9 3 1
5 1 5 3 4 9 1 5 3 4 9 1
6 16 3 7 9 10 5 8 4 2 1 %4 modIl &6+ modll
71 7 5 2 3 10 4 6 9 8 1 7% modll&7#l mod 11
8 I8 9 6 4 10 3 2 5 7 1 g% modll&8#l modll
9 I 9 4 3 5 1 9 4 3 5 1
10 I 10 1 10 1 10 1 10 1 10 1
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Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:
35=1mod 11 and 32+ 1 mod 11.
The set of such elements forms a subgroup of prime order ¢ = 5 if we add to these elements the neutral
group element 1.
This subgroup has a great importance in cryptography we denote by
G;={1,3,4,5,9}.
The multiplication table of G5 elements extracted from multiplication table of Z,," is presented below.

Multiplication G5 Exponent G5

tab. mod 11 Values of inverse tab. mod 11
* 1 3 4 5 9 elements in Gs A 0 1 2 3 4 5
1 1 3 4 5 9 1= 1 mod 11 1 1 1 1 1 11
3 3 9 1 4 5 3'=4mod 11 3 1 3 9 5 4 1
4 4 1 5 9 3 4'=3mod 11 4 1 4 5 9 3 1
5 5 4 9 3 1 3'=9 mod 11 5 1 5 3 4 9 1
9 9 5 3 1 4 9 =5mod 11 9 1 9 4 3 5 1

Discrete Exponent Function (11/14)

Notice that since Gy is a subgroup of Z,," the multiplication operations in it are performed mod 11.

The exponent table shows that all elements {3, 4, 5, 9} are the generators in Gs.

Notice also that for all ye {3, 4, 5, 9} their exponents 0 and 5 yields the same result, i.e.
¥'=9"=1mod 11.

This means that exponents of generators y are computed mod 5.

This property makes the usage of modular groups of prime order ¢ valuable in cryptography since they
provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Z," defined by the prime (not necessarily strong prime)
number p the subgroup of prime order G, in Z," is used.
In this‘ case if{)his strong prime, then generator y in G, can be found by random search satisfying the
following conditions

vi=1mod p and y*# 1 mod p.
Analogously in this generalized case this means that exponents of generators y are computed mod ¢. In
our modeling we will use group Z,” instead of G|, for simplicity.
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Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g=7 from the set ['={2, 6, 7, 8}.
Public Parameters are PP=(11,7), Then DEF ,(x) = DEF,(x) is defined in the following way:
DEF-(x)=7"mod 11 = a;
DEF,(x) provides the following 1-to-1 mapping, displayed in the table below.
X 0 1 2 3 4 5 6 7 8 9 1012 13 14
Tmodp=e 1 7 5 2 /3 10 4 6 9 8 [ | 7|5 2 3

You can see that @ values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced mod
10 due to Fermat little theorem.
The illustration why 7* mod p values are repeating when x =10, 11, 12, 13, 14, etc. is presented in

computations below:
10mod 10=0; 7'=7"= Imod11= 1.

llmod10=1; 7"'=7'= TmodIl= 7.
12mod 10=2; 72=72= 49mod 11 = 5.
13mod 10=3; 73=73=343mod 11 = 2.
14mod 10=4; 7¥=74=2401 mod 11 = 3.
etc.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of DEF,(x) we perform the following step-by-step computations.

7= 1 mod 11
7'=7 mod 11
7°=5mod 11
7°=2 mod 11
7'=3 mod 11
7°=10 mod 11
7°=4 mod 11
7'=6mod 11
7°=9 mod 11
7= 8 mod 11

It is seen that one value of x is mapped to one value of a.
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Discrete Exponent Function (14/14)

But the most in interesting think is that DEF is behaving like a pseudorandom function.
It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of DEF we compare the graph of "regular" sine
function with "pseudorandom" DEF using Octave software.

>>pl128sin >> pl128def

xrange = 16 * pi; p=127;

step = xrange/128; g=23;

¥ = O:step:xrange; ¥ =0:p-1;

y = sin(x); a = mod_expv(g, X, p);
comet(x, y) comet(x a]

2

. I' . | .f|||||\|| ||I '| ‘ ||{|| \|| |}|l

m )

E

=

010_005 DEF.Homomorphism Page 8



