>> c=mod(ab,p)

C:\Users\Eligijus\Documents\100 MOKYMAS\100-2024 Rud

4 DEF

 $Z_n = \{0, 1, 2, 3, ..., n-1\}; + mod n, - mod n, * mod n, / mod n.
 Finite ring of integers mod n.
 <math display="block">
 Z_p = \{0, 1, 2, 3, ..., p-1\}; + mod p, - mod p, * mod p, / mod p.
 Finite field - Galois field mod p when p is prime.
 <math display="block">
 Z_p^* = \{1, 2, 3, ..., p-1\}; * mod n, / mod p.
 Finite algebraic group mod p.
 <math display="block">
 Z_{p-1} = \{0, 1, 2, 3, ..., p-2\}; + mod p-1, - mod p-1, * mod p-1.$ Finite ring of integers mod n.

Finite ring of integers mod n.

Finite ring of integers mod p-1.

<+ mod p-1, - mod p-1, * mod p-1, / mod p-1 >

<Z_p*, *mod n>

 $DEF_{\varrho}(x) = g^{x} \bmod p = a;$

>> mod (51, 11)

Discrete Exponent Function (1/14)

The Discrete Exponent Function (**DEF**) used in cryptography firstly was introduced in the cyclic multiplicative group $\mathbf{Z}_p^* = \{1, 2, 3, ..., p-1\}$, with binary multiplication operation * **mod** p, where p is prime number. Further the generalizations were made especially in *Elliptic Curve Groups* laying a foundation of *Elliptic Curve CryptoSystems* (ECCS) in general and in *Elliptic Curve Digital Signature Algorithm* (ECDSA) in particular.

Let g be a generator of \mathbb{Z}_p^* then **DEF** is defined in the following way:

$$\mathbf{DEF}_{o}(\mathbf{x}) = \mathbf{g}^{\mathbf{x}} \bmod \mathbf{p} = \mathbf{a};$$

DEF argument x is associated with the private key – PrK (or other secret parameters) and therefore we will label it in red and value a is associated with public key – PuK (or other secret parameters) and therefore we will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime number has a length of 2048 bits, which means it is represented in decimal as being on the order of 2^{2048} , or approximately $p \sim 2^{2048}$.

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also with a strong prime numbers.

Discrete Exponent Function (2/14)

<u>Definition</u>. Binary operation * mod p in Z_p^* is an arithmetic multiplication of two integers called operands and taking the result as a residue by dividing by p.

For example, let p = 11, then $Z_p^* = \{1, 2, 3, ..., 10\}$, then $5 * 8 \mod 11 = 40 \mod 11 = 7$, where $7 \in Z_p^*$.

In our example the residue of 40 by dividing by 11 is equal to 7, i.e., 40 = 3 * 11 + 7. Then 40 **mod** 11 = (33 + 7) **mod** 11 = (33 mod 11 + 7 mod 11) **mod** 11 = (0 + 7) **mod** 11 = 7. Notice that 33 **mod** 11 = 0 and 7 **mod** 11 = 7.

<u>Definition</u>: The integer g is a generator in Z_p^* if powering it by integer exponent values x all obtained numbers that are computed mod p generates all elements in in Z_p^* .

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of Z_p^* . You will see that exactly p-1 exponents x is enough.

Discrete Exponent Function (3/14)

Let Γ be the set of generators in \mathbb{Z}_p^* . How to find a generator in \mathbb{Z}_p^* ?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the generator in \mathbb{Z}_p^* can be found by random search satisfying two following conditions.

For all $g \in \Gamma$

$$g^q \neq 1 \mod p$$
; and $g^2 \neq 1 \mod p$.

<u>Fermat little theorem</u>: If p is prime then for all integers n:

$$i^{p-1} = 1 \mod p$$
.

<u>Corollaries</u>: 1. The exponent p-1 is equivalent to the exponent 0, since $i^0 = i^{p-1} = 1 \mod p$.

2. Any exponent e can be reduced **mod** (p-1), i.e.

$$i^e \mod p = n^{e \mod (p-1)} \mod p$$
.

- 3. All non-equivalent exponents \vec{x} are in the set $Z_{p-1} = \{0, 1, 2, ..., p-2\}$.
- 4. Sets Z_{p-1} and Z_p^* have the same number of elements.

Discrete Exponent Function (4/14)

In \mathbb{Z}_{p-1} addition +, multiplication * and subtraction - operations are realized **mod** (p-1).

Subtraction operation $(h-d) \mod (p-1)$ is replaced by the following addition operation $(h + (-d)) \mod (p-1)$).

Therefore, it is needed to find $-d \mod (p-1)$ such that $d + (-d) = 0 \mod (p-1)$, then assume that

$$-d \mod (p-1) = (p-1-d).$$

Indeed, according to the distributivity property of modular operation

$$(d + (-d)) \mod (p-1) = (d + (p-1-d) \mod (p-1) = (p-1) \mod (p-1) = 0.$$

Then

$$(h-d) \mod (p-1) = (h + (p-1-d)) \mod (p-1)$$

>> ma=mod(-a,p) ma = 8

>> mod(a+ma,p)

ans = 0

Discrete Exponent Function (5/14)

<u>Statement</u>: If greatest common divider between p-1 and i is equal to 1, i.e., gcd(p-1, i) = 1, then there exists unique inverse element $\dot{r}^1 \mod (p-1)$ such that $i * \dot{r}^1 \mod (p-1) = 1$. This element can be found by Extended Euclide algorithm or using Fermat little theorem. We do not fall into details how to find $\dot{r}^1 \mod (p-1)$ since we will use the ready-made computer code instead in our modeling.

Division operation / mod(p-1) of any element in \mathbb{Z}_{p-1} by some element i is replaced by multiplication * operation with $i^{-1} mod(p-1)$ if gcd(i, p-1) = 1 according to the *Statement* above.

To compute $u/i \mod (p-1)$ it is replaced by the following relation $u * i^{-1} \mod (p-1)$ since

$$u/i \mod (p-1) = u * i^{-1} \mod (p-1).$$

Discrete Exponent Function (6/14)

<u>Example 1</u>: Let for given integers u, x and h in Z_{p-1} we compute exponent s of generator g by the expression

s = u + xh.

Then

$$g^s \mod p = g^{s \mod (p-1)} \mod p$$
.

Therefore, s can be computed **mod** (p-1) in advance, to save a multiplication operations, i.e.

$$s = u + xh \mod (p-1)$$
.

<u>Example 2</u>: Exponent s computation including subtraction by $xr \mod (p-1)$ and division by i in Z_{p-1} when gcd(i, p-1) = 1.

 $s = (h - xr)\dot{t}^{-1} \bmod (p-1).$

Firstly $d = xr \mod (p-1)$ is computed:

Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found.

Thirdly $i^{-1} \mod (p-1)$ is found.

And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

>> uxh=u+x*h uxh = 58 >> mod(58,11) ans = 3 >> xh=x*h xh = 56 >> mod(xh,p) ans = 1 >> s=mod(u+1,11) s = 3

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be proved.

<u>Theorem</u>. If g is a generator in Z_p^* then **DEF** provides the following 1-to-1 mapping

DEF:
$$Z_{p-1} \rightarrow Z_p^*$$
.

Parameters p and g for **DEF** definition we name as Public Parameters and denote by PP = (p, g).

Example: Strong prime
$$p = 11$$
, $p = 2 * 5 + 1$, then $q = 5$ and q is prime. Then $p-1 = 10$.
$$Z_{11}^* = \{1, 2, 3, ..., 10\}$$

$$Z_{10} = \{0, 1, 2, ..., 9\}$$

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named *Cayley table* including multiplication table, addition table etc.

Multiplication table of multiplicative group Z_{11}^{*} is represented below.

					_	-	••	-			
Multiplication tab. mod 11		$Z_{11}^{^*}$									
	*	1	2	3	4	5	6	7	8	9	10
	1	1	2	3	4	5	6	7	8	9	10
	2	2	4	6	8	10	1	3	5	7	9
	3	3	6	9	1	4	7	10	2	5	8
	4	4	8	1	5	9	2	6	10	3	7
	5	5	10	4	9	3	8	2	7	1	6
	6	6	1	7	2	8	3	9	4	10	5
	7	7	3	10	6	2	9	5	1	8	4
	8	8	5	2	10	7	4	1	9	6	3
	9	9	7	5	3	1	10	8	6	4	2
	10	10	9	8	7	6	5	4	3	2	1

Values of inverse elements in Z_{11}^*

miverse cicinents
1 ⁻¹ = 1 mod 11
$2^{-1} = 6 \mod 11$
$3^{-1} = 4 \mod 11$
$4^{-1} = 3 \mod 11$
$5^{-1} = 9 \mod 11$
$6^{-1} = 2 \mod 11$
$7^{-1} = 8 \mod 11$
$8^{-1} = 7 \mod 11$
$9^{-1} = 5 \mod 11$
$10^{-1} = 10 \mod 11$

Discrete Exponent Function (9/14)

The table of exponent values for p=11 in Z_{11}^* computed **mod** 11 and is presented in table below. Notice that according to Fermat little theorem for all $z \in Z_{11}^*$, $z^{p-1} = z^{10} = z^0 = 1$ **mod** 11.

Exponent tab. mod 11	Z_{11}^*										
^	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	5	10	9	7	3	6	1
3	1	3	9	5	4	1	3	9	5	4	1
4	1	4	5	9	3	1	4	5	9	3	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1
9	1	9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1	10	1

List of generators when q = 5

$6^2 \neq 1 \text{ m}$	nad					
$7^2 \neq 1$ m						
$8^2 \neq 1$ m	od	11	&	8 ⁵ ≠1	mod	11

Strong prime p p = 20 9 + 1 q = is prime 11 = 2.5 + 1 q = 5

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

$$3^5 = 1 \mod 11$$
 and $3^2 \neq 1 \mod 11$.

The set of such elements forms a subgroup of prime order q = 5 if we add to these elements the *neutral* group element 1.

This subgroup has a great importance in cryptography we denote by

$$G_5 = \{1, 3, 4, 5, 9\}.$$

The multiplication table of G_5 elements extracted from multiplication table of Z_{11}^* is presented below.

Multiplication tab. mod 11	<i>G</i> 5				
*	1	3	4	5	9
1	1	3	4	5	9
3	3	9	1	4	5
4	4	1	5	9	3
5	5	4	9	3	1
9	9	5	3	1	4

Values of inverse elements in G ₅					
$1^{-1} = 1 \mod 11$					
$3^{-1} = 4 \mod 11$					
$4^{-1} = 3 \mod 11$					
$5^{-1} = 9 \mod 11$					
$9^{-1} = 5 \mod 11$					

Exponent tab. mod 11	G5					
۸	0	1	2	3	4	5
1	1	1	1	1	1	1
3	1	3	9	5	4	1
4	1	4	5	9	3	1
5	1	5	3	4	9	1
9	1	9	4	3	5	1

Discrete Exponent Function (11/14)

Notice that since G_5 is a subgroup of Z_{11}^* the multiplication operations in it are performed mod 11.

The exponent table shows that all elements $\{3, 4, 5, 9\}$ are the generators in G_5 .

Notice also that for all $\gamma \in \{3, 4, 5, 9\}$ their exponents 0 and 5 yields the same result, i.e.

$$\gamma^0 = \gamma^5 = 1 \mod 11$$
.

This means that exponents of generators γ are computed **mod** 5.

This property makes the usage of modular groups of prime order q valuable in cryptography since they provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Z_p^* defined by the prime (not necessarily strong prime) number p the subgroup of prime order G_q in Z_p^* is used.

In this case if p is strong prime, then generator γ in G_q can be found by random search satisfying the following conditions

$$\gamma^q = 1 \mod p$$
 and $\gamma^2 \neq 1 \mod p$.

Analogously in this generalized case this means that exponents of generators γ are computed **mod** q. In our modeling we will use group Z_p^* instead of G_q for simplicity.

Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g=7 from the set $\Gamma = \{2, 6, 7, 8\}$. Public Parameters are PP = (11,7), Then $DEF_{\alpha}(x) = DEF_{\gamma}(x)$ is defined in the following way:

$$DEF_{7}(x) = 7^{x} \mod 11 = a;$$

 $\mathbf{DEF}_{7}(x)$ provides the following 1-to-1 mapping, displayed in the table below.

	0														
$7^x \mod p = a$	1	7	5	2	3	10	4	6	9	8	1	7	5	2	3

You can see that a values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced **mod** 10 due to *Fermat little theorem*.

The illustration why $7^x \mod p$ values are repeating when x = 10, 11, 12, 13, 14, etc. is presented in computations below:

```
10 \mod 10 = 0; 7^{10} = 7^0 = 1 \mod 11 = 1.
```

11 mod
$$10 = 1$$
; $7^{11} = 7^1 = 7 \mod 11 = 7$.

$$12 \mod 10 = 2$$
; $7^{12} = 7^2 = 49 \mod 11 = 5$.

13 mod
$$10 = 3$$
; $7^{13} = 7^3 = 343 \mod 11 = 2$.

14 mod
$$10 = 4$$
; $7^{14} = 7^4 = 2401 \mod 11 = 3$.

etc.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of $\mathbf{DEF}_{7}(\mathbf{x})$ we perform the following step-by-step computations.

	$x \in Z_{10}$	$a \in Z_1$
$7^0 = 1 \mod 11$	0	→ 1
$7^1 = 7 \text{ mod } 11$	1	2
$7^2 = 5 \mod 11$	2	3
$7^3 = 2 \mod 11$	3	4
$7^4 = 3 \mod 11$	4	5
$7^5 = 10 \text{ mod } 11$	5	6
$7^6 = 4 \mod 11$	6	7
$7^7 = 6 \text{ mod } 11$	7	8
$7^8 = 9 \text{ mod } 11$	8	9
$7^9 = 8 \mod 11$	9	10

It is seen that one value of x is mapped to one value of a.

Discrete Exponent Function (14/14)

But the most in interesting think is that **DEF** is behaving like a *pseudorandom function*.

It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of **DEF** we compare the graph of "regular" **sine** function with "pseudorandom" **DEF** using Octave software.



